

 Navigation

 	
 index

 	
 next |

 	django-admin-extensions 0.2.1 documentation

Welcome to django-admin-extensions’s documentation!

django-admin-extensions makes some common extensions to the Django admin
easy.

Contents:

	Setup

	Usage
	Extending the Object Tools list

	valid_lookups

	adminextensions.shortcuts
	link_field

	model_link

	model_search

	serialized_many_to_many_field

	related_field

	truncated_field

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Tim Heap.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-admin-extensions 0.2.1 documentation

Setup

	Install it from pip:

pip install django-admin-extensions

	Add adminextensions to the INSTALLED_APPS setting:

INSTALLED_APPS += (
 'adminextensions',
)

 Copyright 2012, Tim Heap.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-admin-extensions 0.2.1 documentation

Usage

To enable extended functionality in your Django admin, your admin class needs
to extend ExtendedModelAdmin, like so:

in app/admin.py

from app.models import Book

from adminextensions import ExtendedModelAdmin
from django.contrib import admin

class BookAdmin(ExtendedModelAdmin):
 pass

admin.site.register(Book, BookAdmin)

Everything else in this documentation will assume that you are using the
ExtendedModelAdmin base class.

Extending the Object Tools list

The buttons to the top-right of every Django admin screen are called object
tools. django-admin-extensions allows you to easily add new links to the
object tools, with out having to extend and override the admin templates:

in app/admin.py

from app.models import Author

from adminextensions import ExtendedModelAdmin
from django.contrib import admin

class AuthorAdmin(ExtendedModelAdmin):

 object_tools = {
 'add': [...],
 'change': [...],
 'changelist': [...],
 }

admin.site.register(Author, AuthorAdmin)

The 'add', 'change', and 'changelist' lists should be populated
with callables. These callables will be called with the template context as
their only argument. They should return a string, which will be wrapped in a
 tag and printed to the screen as an object tool. To duplicate the
‘View on site’ object tool, you could do the following:

def absolute_url(context):
 object = content['original']
 if not hasattr(object, 'get_absolute_url'):
 return ''

 return '{1}'.format(
 original.get_absolute_url(), 'View on site')

class AuthorAdmin(ExtendedModelAdmin):

 object_tools = {
 'change': [absolute_url],
 }

The most common use case is adding links to related models on the 'change'
view. This can be achived using the folloing code:

class AuthorAdmin(ExtendedModelAdmin):
 object_tools = {
 'change': [
 model_search('Find books', Book,
 lambda author: {'book__author__pk': author.pk}),

 model_link('View publisher', Publisher,
 lambda book: author.publisher.pk),
]
 }

Here, a link is created to the changelist showing all books written by the
current author, and a link is created to the change view of the authors
publisher. These make use of the model_search and
model_link shortcuts.

valid_lookups

By default, the Django admin does not allow filtering via GET parameters on
related models. This is for securiry reasons - filtering on related models is a
potentially expensive operation, and a denial of service attack could be
constructed by abusing this.

Some times though, these kind of look ups are exatly what we want.
valid_lookups is a whitelist of related model lookups that should be
allowed by the admin. Use it like this:

class BookAdmin(ExtendedModelAdmin):

 valid_lookups = (
 'author__pk'
)

This allows for lookups on a Book’s Author’s primary key - and nothing more.
You will likely have to add a related fields primary key to this list every
time you use model_search in the object_tools.

 Copyright 2012, Tim Heap.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	django-admin-extensions 0.2.1 documentation

adminextensions.shortcuts

link_field

Used in list_display to create a link to another model. For example:

in app/admin.py

from app.models import Book, Author

from adminextensions import ExtendedModelAdmin
from adminextensions.shortcuts import link_field
from django.contrib import admin

class BookAdmin(ExtendedModelAdmin):
 list_display = ('title', link_field('author'))

admin.site.register(Book, BookAdmin)
admin.site.register(Author)

By default, links from link_field point to the 'change' action on the
destination model. You can change this by providing the name of another action
as the action kwarg.

The destination model is displayed using its __unicode__ method by default.
This can be overridden by supplying a callable as the formatter kwarg. This
should accept a single argument, which is the model instance:

class BookAdmin(ExtendedModelAdmin):
 list_display = (
 'title',
 link_field('author', formatter=lambda a: a.full_name)
)

A short_description parameter is automatically generated based on the linked
field name. To override this, use the short_description parameter.

model_link

Used in object_tools to create a link to another model. For example:

in app/admin.py

from app.models import Book, Author

from adminextensions import ExtendedModelAdmin
from adminextensions.shortcuts import link_field
from django.contrib import admin

class BookAdmin(ExtendedModelAdmin):
 object_tools = {
 'change': [
 model_link('View author', Author, lambda book: book.author.pk),
]
 }

admin.site.register(Book, BookAdmin)
admin.site.register(Author)

The arguments to model_link are, in order:

	The text of the link

	The Model class that will be linked to

	A callable that, given an instance of the primary model (Book, in the
example) will return the primary key of the related model.

By default, links from model_link point to the 'change' action on the
destination model. You can change this by providing the name of another action
as the action kwarg.

If the primary key getter returns None, the link is not printed.

model_search

Used in object_tools to create a link to the change list of another model. For
example, to link from the change view of an Author to a change list of all
Books by that Author:

in app/admin.py

from app.models import Book, Author

from adminextensions import ExtendedModelAdmin
from adminextensions.shortcuts import link_field
from django.contrib import admin

class AuthorAdmin(ExtendedModelAdmin):
 object_tools = {
 'change': [
 model_search('Find books', Book, lambda author: {'author__pk': author.pk}),
]
 }

admin.site.register(Author, AuthorAdmin)
admin.site.register(Book)

The arguments to model_link are, in order:

	The text of the link

	The Model class that will be linked to

	A callable that, given an instance of the primary model (Author, in the
example) will a dict of querystring parameters to use in the change list
filter.

In the example above, where books are filtered on 'author__pk',
'author' would have to be added to the valid_lookups list on the
BookAdmin. See the valid_lookups documentation for more information.

serialized_many_to_many_field

The serialized_many_to_many_field shows the contents of a many-to-many
relation inline in the admin change list:

in app/admin.py

from app.models import Author, Genre

from adminextensions import ExtendedModelAdmin
from adminextensions.shortcuts import serialized_many_to_many_field
from django.contrib import admin

class AuthorAdmin(ExtendedModelAdmin):
 list_display = (
 'given_name', 'family_name',
 serialized_many_to_many_field('genre')
)

admin.site.register(Author, AuthorAdmin)
admin.site.register(Genre)

The list of models is just plain text by default. Links to the models can be
printed instead, by supplying linked=True to
serialized_many_to_many_field.

The destination models are displayed using their __unicode__ method by
default. This can be overridden by supplying a callable as the formatter
kwarg. This should accept a single argument, which is the model instance:

class AuthorAdmin(ExtendedModelAdmin):
 list_display = (
 'given_name', 'family_name',
 serialized_many_to_many_field('genre',
 formatter=lambda g: g.name)
)

Items in the list are joined by ', ' by default. This can be overridden
using the joiner kwarg.

A short_description parameter is automatically generated based on the linked
field name. To override this, use the short_description parameter:

class AuthorAdmin(ExtendedModelAdmin):
 list_display = (
 'given_name', 'family_name',
 serialized_many_to_many_field('genre', short_description='writes')
)

related_field

The related_field shows a field on a related model in the change list.
This is used to display extra data on a related model when the default of
using the __unicode__ method on the model does not suffice. It can take
three arguments, with field being the only required argument.

field is the double-underscore-delimited path to the field to display,
such as 'author__name'.

formatter takes the value and formats it for display. The default is to
just return the value. The Django admin is fairly sensible at formatting
things.

short_description is used as the column header. It defaults to field

Example:

in app/admin.py

from app.models import Author, Genre

from adminextensions import ExtendedModelAdmin
from adminextensions.shortcuts import related_field
from django.contrib import admin

class BookAdmin(ExtendedModelAdmin):
 list_display = (
 'title',
 related_field('author__name'),
)

admin.site.register(Book, BookAdmin)

truncated_field

The truncated_field shows a truncated version of a field. Use this on
content fields that may have a lot of data. The data is truncated after
length words. length defaults to 20:

in app/admin.py

from app.models import Author, Genre

from adminextensions import ExtendedModelAdmin
from adminextensions.shortcuts import truncated_field
from django.contrib import admin

class BookAdmin(ExtendedModelAdmin):
 list_display = (
 'title', truncated_field('content', length=15),
)

admin.site.register(Book, BookAdmin)

A short_description parameter is automatically generated based on the linked
field name. To override this, use the short_description parameter.

 Copyright 2012, Tim Heap.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	django-admin-extensions 0.2.1 documentation

Index

 Copyright 2012, Tim Heap.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		django-admin-extensions 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Tim Heap.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

